
FIGURE 1: T~ansmission of
and th~ mixing tank model

1

a step change USlnq

(1 to 50 tanks).
the plug flow model

FIGURE 2: Th€ fotlr co~nerstone single-pha~e flow equati~ns and
the flow of information between them.

FIGURE 3: The ~ight cornerstone two-phase flow equations and
the flow of information between them.

FIGURE 4: A special case of the general two-ph~se flow equations.
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FIGURE 2 The four cornerstone slngle·phase flow equations and the flow of
Informalfon between them.
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THE RATE METHOD - ~fJ£eAL-l ~D

<

~?~f;~.

In the followiilg. the case of two-p~ equilibrium is considered fIrst in order to

illustrate the method. Subsequently. the equations are extended to cover single phase and

two-phase non-equilibrium fluic\.

Two-Phase Equilibrium

For a two-phase hcmogenecus mixture we have:

v=vr+xvrg

h=h +.xhrr g

where Vrg '" vg - vrand hrg == hg - hr.

(26)

(27)

(2S)

We wish to ,elate rates of change of pr~ssure to rates of change in p and h. Specifically, we

desire:

~P = G dp +G dh
dt 1 dt 2dt

sinc6 dp/dt and d!lldt (or equivalently, dMldt and dHldt) are available from the mass and

enthalp)' conservation equations. First <;oncentrating on the case of constant p (or v). to

obtain G2, we differentiate equation 27 to gives:

dx

dP

)

dh Iahr ax· ahrgIdP
dt = ap + hrqp + x .ap dt

Us'"g equation26.holdingvconstant: (~ fo.~)

_ {~) = _2- lavr +x aVrgl_
~p vr ap ap

g .

Suhstituting this into equation 29 gives:

dh = {Chr + x ahrg _ hrg \avr +" avrgl} dP
dt ap aP Vrg ap aP dt

or equally:

~_~:>;ki...._-

j~.'+'"

(29)

J-,J--l<)d "'Jh
I~,\< ~

'" ~ d V ..,
VI' ') ;);3

(30)

(31)
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dP
-=
dt

vCg dh

{vrg[~ + /~g !-hCg [7; + x 7;g Il dt

• vCg dh = G dh
{DENOMINATOR} dt 2 dt

This gives the pressure rate respolL."C due to an enthalpy rate cha.,ge, holding p constant.

(32)

(33)

lCwe repeat the above but holding h constant we fmd:
_1--a~
'))"~t 2

o dP -hCg dv hrg" dp dp
-- -- --G-

OJ' ;... <J,::, ~ d~ dt - {DENOMINATOR} dt {DENOMINATOR} dt - 1 dt
- (~ 0" Ncte that G1 and Q.z are functions that depend only on the local saturation fluid properties

and their slopes at the local pressure.

Combining equation 32 and 33 to get the total pressure rate response when both h and

i' are varying:

dP dp dh
~=Gl~~~+~~~~' ~

This is the rate form of the eqution of state for two-phase equilibrium fluid in terms of the

intensive rate i'roperties, dpldtand dhldt, which are obtained from the continuity equations.

Equation (34) can be cast in the extensive form by noting that, since p = MIV and

dp 1 dM M dV
dt = V dt - \;]2 dt (35)

(36)

Substituting into equation 34 and collecting terms:

dlf

dt
(37)

(38)



where:

and
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F
1 = h"vf-hrv"

F
2 = v" - Vr

F = Ii' - h3
f "

ah" iJvr
F. '" - (v - vrl - - (hI' - hrl

, ciP" of

ah
f

iJvr
Fs = - (,. - vfl - - (h~ - hflap g ap e

,:·:ft~;:"~~~~i;:'

, .::<--''--~'

(391

Mr = (l-xlM. r?
T!Ie F functions are smooth, slowly ',arying functions of pressure (see Figures 6-101

prcvided gMd curve fits are used. The latest steam tables (Haar, 1984) were used to fit

saturated properties to less than 1/4% accuracy using low order polynomials and exponentials

(Garland and Hoskins, 1988). Considerable effort wan spent "n obtaining accuracy and

continuous derivatives over the full pressure range. The fact that good fits are available

means that the F functions are well behaved which in turn makes the rat.e form of the

equation ofstate extremely well behaved, as shown later.

The G functions are also well behaved for the same reasons.

The F and G functions have direct physical interpretations which aid in generating

intuition. The F functions relate changes in the extensive properties, M, H and V, to changes

in pressure. The G functions related changes in the intensive properties, p and h, to clliinges

in pressure. Often, a simple numerical evaluation of these functions during a simulation aids

in developing an apprecia tion of the changing roles of the key actors in a dynamic simulation.

For instance, because Fl is negative, we immediately see that adding mass to a fixed

volume of liquid with fixed total enthalpy will cause a depressurization (because the npecific
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enthalpy, h = HIM, is decreased). But, since G1 is positive, an increase in density in a fluid of .

fixed specific enthalpy causes a pressurization.

Single-phaSe, Non-Equilibrium (Subcooled and Superheated)

For the single-phase subcooled or superheated case, we do not have to account for the

sorting out between phases as we did for the two phase case. thus the derivation is more

direct and less complex. We could simply use:

P = n(p,ll)

to give:

(40)

(41)dP = ap) dp + dP) dh
dt ap I h dt ah p dt

but, since the steam tables are given as a function of P and T, the slopes in equation 41 ar" not

easily obtained. To cast the jlressure rate equation in terms Df the independent vadables, P

and T, consider:

and

p = p(P, T)

h =h(P, T)

(42)

(43)

NDte that the non-equilibrium case requires the explicit tracking of the temperature

in addition to pressure. Taking derivatives of Equations 42 and 43:

dp ap 'I dP ap I dT
dt = ap T dt + <if p dt

and

dh = ah I dP + ah I dT
dt aP T dt aT p dt

But we desire:

dP dp dh
- =G -+0
dt IP dt 2P dt

and

dT dp dh
-=G -+G 
dt IT dt 2T dt

This is easily obtained by solving equation 44 and 45 for dP/dt and dT/dt to yield:

...-' ".' .. . . ":,:;::---, ...:.~. "". ."....
,J, ~ }:~~v.it4.4_1~·;.t::~ ,:::i}~,~';

(44)

(45)

(46)

(47)
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and

ah) dp ap ) dh
dT aP T dt - aP T dt
-=
dt ap ) dh.) ap ) ah'l

iff pdP T - cJP T3rJp

which is the intensive form.we desire.

':_~I~;~I.t~·~'-~(::;

;~

(48)

(49)

The extensive form is obtained as for the two-phase equilibrium case. Equations 35

and 36 are sub3tituted into eGuatio"s 48 and 49 and after rearrangement we fmd:

,
J

and

where

dP

dt

dT

dt

dM dH dV
F - +F - +F -

IP dt 2P dt 3P dt

M,F4P + MtFsp

dM dH dV
F - +F - +F -

IT dt 2T dt aT dt

M,F4T + Mt""ST

(51)

FIP =

F 2P =

ah) ap )p- -h-
iff p iff p

_ ap )
iff p

dP) ah) ap ) dh)
= ap T iff P - iff pdP T

dP) ah) ap ) dh)
Fsp = ap Tiff p - iff pdP T

= 0

subOJOled

superheated

subcooled

superhea ted

(52)
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M = massoCvaporphase = 0 subcooled
v

= Msuperheated

Mt = massoCliquid phase = Msubcooled

= 0 superheated

F
2T

= ap
)

- ap T

ah)
FaT = -Pap T

F.rr=-F4P

Two-Phase Non-Equilibrium

The rate Corm for the e<;.uation of state Cor the two-phase non-equilibrium case is a

simple extension oC the single-phase non-equilibrium case. The liquid and vapor phases are

treated independently to give:

dT
k--=

dt

k dPk k dhk
G

1P
- +G

2P
-

dt dt
(53)

(54)

where k represents eithor eor < for the liquid or vapor phases respectively. In general, the 6

equatior:l model (3 continuity equations for each phase) would-be used for the general unequal

temperature, unequal velocity, unequal pressure situation. Thus dPkfdt and dhk/dt are

available to the rate form of the equation ofstate.
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Functions

Case

2<1> equilibrium
(all deriva tives along

saturation line)

1<1> non-equilibrium
pressure

1<I> non - equilibrium
temperature
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