FIGURE 1: Transmission of & step change using the plug flow model
and the mixing tank moadel (1 to S0 tanks).

FIGURE 2: The four cornerstone sinagle—phase flow equatinns and
the flow of information between them.

FIGURE =: The ¢iabht cornerstone two—phase flow equations and
the fiow of intormation between them.

FIGURE 4: A& special case of the general twoe-phase flow equations.
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FIGURE 1 Transmission of a step change using the Plug Flow Model and the Mixing
Tank Model (1 to 50 Tanks)
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FIGURE 2 The four cornerstone single-phase flow equalions and the flow of
information between them.
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THE RATE METHOD — C:L‘.«JF_QQL( ED

In the followmg, the case of two-phase equﬂlbnum is considered first in order to

illustrate the method. Subsequently, the equatlons are extended to cover single phase and
two-phase non-equilibrium ﬂmd
Two-Phase Equilibrium

For a two-phase hcmogeneous mixture we have

—
v Vr g X‘Vfg

(26}
h=h,+xh
where vfg = vy — vandhgz = hy — hy.

27
We wish to relate rates of change of pressure to rates of change in p and h. Specifically, we
desire:

dp d dh
e, g™ (28)
dt 1dt 2.4t
since dp/dt and dY/dt (or equivalently, dM/dt and dH/dt) are available from the mass and
enthalpy conservation equations. First concentrating on the case of constant p (or v}, to
obtain Gy, we differentiate equation 27 to gives
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Substituting this into equation 29 gives
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or equally:
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This gives the pressure rate response due to an enthalpy rate change, holding p constant.

If we repeat the above but holding h constant we find:
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and their slopes at the local pressure.

dp (33)
ldt -

Note that Gy and Gy are functions that depend only on the local saturation fluid properties

Combining equation 32 and 33 to get the total pressure rate response when both h and

p are varying:
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(34)

This is the rate form of the eqution of siate for two-phase equilibrium fluid in terms of the

intensive rate propertizs, dp/dt and dh/dt, which are obtained from the continuity equations.

Equation (34) can be cast in the extensive form by noting that, since p = M/V and

h = HM,
;v - (B dp 1M _ Mgy
ot t v dt g2 dt
and
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Substituting into equation 34 and collecting terms:

glj'_(cn GH)dM G, an GMdV
v

dt B

J Aﬂ:er soms simplification and rearrangement we find:
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. \_vhere:
F‘1 = h"vr—hl.v
l""2 = v‘-vf
F3 = hf—hg
'aii" v,
F, = E(vl!—vf)_ E’(hg-hf)
. ah v
= T Tt (39
F5 =3 (1.g—vf) P (l'lg hf)
- — M:=xM
4
and
= o
M, =1-x)M. o

The F functions are smooth, slowly varying functions of pressure (see Figures 6-10)
previded geod surve fits are used. The latest steam taSIes (Haar, 1984) were used to fit
saturated properties to less than 1/4% accuracy using low order polynomials and expoﬁentials
(Garland and Hoskins, 1988). Considerable effort was spent on obtaining accuracy and
continuous derivatives over the full pressure range. The fact that good fits are available
means that the F functions gre'\yel’l behaved which in turn makes the rate form of the
equation of state extremely well behaved, as shown later.

The G functions are also well behaved for the same reasons.

The F and G functions have direct physical interpretations which aid in generating
intuition. The F functions relate changes in the extensive properties, M, H and V, to changes
in pressure. The G functions related phgnges in the intensive ;;roperties, p and h, to chinges
in pressure. Often, a simple numel;ical evaluation of these functions during a simulation aids
in developing an appreciation of the changing roles of the key actors in a dynamic simulation.

For instance, because Fy is negative, we immediately see that adding mass to a fixed

volume of liquid with fixed total enthalpy will cause a depressurization (because the specific




enthalpy, h = H/M, is decreased). But, since G; is positive, an increase in density in a fluid of .

fixed specific enthalpy causes a pressurization.

Single-Phase, Non-Equilibrium (Subcooled and Superheated)

For the single-phase subcocled or superheated case, we do not have to account for the
sorting out between phases as we did for the two phase case. thus the derivation is more

direct and iess complex. We could simply use:

P=n (pl h) (40)
to give:

h
P _®)do P dn )
dt  dp/ndt  oh /pat

but, since the steam tables are given as a function of P and T, the slopes in equation 41 are not
easily obtainéd. To cast the pressure rate equation in terms of the independent variables, P

and T, consider:

p = p(P, T 42
and

h = h(P, T) (43)

Note that the non-equilibrium case requires the explicit tracking of the temperature

in addition to pressure. Taking derivatives of Equations 42 and 43:
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This is easily obtained by solving equation 44 and 45 for dP/dt and dT/dt to yield:




and

which is the intensive form we desire.

(48)

{49)

The extensive form is obtained as for the two-phase equilibrium case. Equations 35

and 36 are substituied into equations 48 and 49 and after rearrangement we find:
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M_ = massof vaporphase = 0 subcooled

= M superheated

=
i

¢ = massofliquid phase = Msuboooled

= 0 superheated

Fu= =3 )
F -—pﬁ)
3T aP /7
Fo= —Fop
Foo= —Fep

Two-Phase Non-Equilibrium

The rate form for the equation of state for the two-phase non-equilibrium case is a

simple extension of the single-phase non-equilibrium case. The liquid and vapor phases are

treated independently to give:

Pe_qe o M (53)
dt L2 13 ® qt

54
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dt ~ 1T d¢ P g

where k represents eithcr € or v for the liquid or vapor phases respectively. In general, the 6
equation model (3 continuity equations for each phase) would be used for the general unequal

temperaiure, unequal veiocity, unequal pressure situation. Thus dpy/dt and dhy/dt are

available to the rate form of the equation of state.
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